
		
		
			
		
						
						
			
				
					The ramblings of atbrask

			

								

					

					
				
Millennial, software wizard, byte whisperer, cracker of codes, hacker of things, slayer of bugs, digital polyglot, and professional computer toucher

	
		
						
								
					Arduino
NeoPomodorino: A Pomodoro style timer
				This is a simple Pomodoro style timer I made using a Proto Shield, an Arduino clone, a NeoPixel 24 LED ring clone, and various bits and pieces from my parts drawer.

[image: The NeoPomodorino in action]The NeoPomodorino in action

The single button is wired to pin 3 of the Arduino using a simple RC debounce circuit featured some time ago on Hackaday. It’s probably not needed, but what the hell.

[image: Debounce circuit]Debounce circuit

The LED ring is wired to pin 6 (like it is in every NeoPixel code example I’ve seen so far). As suggested a few places, I have a 470 ohm resistor in series with the data pin, and a electrolytic capacitor across VCC and GND. Like the debounce circuit, these are also probably not needed.

Usage

	Long button presses (> 500ms) will turn the device on and off. This also resets the timer.
	Short button presses will add 1 minute to the current timer.
	Each pomodoro consists of 25 minutes of work (red color) followed by a short 5 minute pause (yellow color).
	Every fourth pause is a longer one of 25 minutes (green color).
	Between each pomodoro, the device will briefly flash which number is (blue color). 1 quarter of the ring = 1 pomodoro.

Get the code on GitHub.

Happy Hacking! 🙂		

By atbrask, 7 years ago

Hardware
RPIWeather: Adding off-the-shelf wireless sensors
				So, the last couple of years I have been developing and using my own home-built wireless thermometer/hygrometer system called RPIWeather (which is open source). Then the other day I discovered that the previous owners of our house (my in-laws) had left a few items outside. To be more precise, they left a couple of wireless thermometer sensors from old weather stations. The weather stations are long gone by now and, needless to say, the batteries were quite dead. But that doesn’t mean the devices themselves don’t work. Hmm.. It might even be possible to add these into my own system. I always like a good challenge…

Let’s have a look…

[image: Three wireless thermometers]Three wireless thermometers

The devices all looked a bit gnarly, but after a bit of clean-up I powered them on one by one and had a look using my RTL-SDR receiver. All three devices worked and transmitted on 433MHz. Yay! But as my RPIWeather base station only supported the nRF24L01 2.4GHz transceivers, I had to make and add a new 433MHz receiver to it.

Setting up a prototype receiver

At first I toyed with the idea of simply adding an RTL USB-dongle to my Raspberry Pi and simply use GNU Radio (or some other SDR framework) to receive the signals. But that seemed a bit overkill. And I’m not even sure a first generation Raspberry Pi is powerful enough for this to work properly. Fortunately, the usual Chinese Ebay sellers offer a few different generic 433MHZ ASK/OOK receiver modules.

[image: RXB12]RXB12

I ended up choosing one called RXB12 which features a Synoxo SYN470R IC. It’s reasonably sensitive across the 433MHz spectrum, but doesn’t offer any I/O besides a continuous stream of binary data (which is just random noise most of the time).

The rest of the prototype was an Arduino Uno, but any old Arduino will do.

The protocols

In parallel with my prototype Arduino setup, I also hooked up my logic analyzer (a cheap Cypress-based Saleae Logic clone) to eavesdrop on the serial data stream from the radio chip.

OBH

[image: OBH unit]OBH unit

The protocol appears to be the one known as “Oregon Scientific V1”, which is a somewhat old protocol exclusively used for temperature-only sensors.

[image: Signal sample]Signal sample

Europe Supplies Ltd. TX3

[image: TX3 unit]TX3 unit

Once you realize that this is identical to a LaCrosse TX3, you are done. This is a very popular sensor and its protocol is quite well known. It is unfortunately not the TX3-TH variety that also reports relative humidity, but at this price (free) I’ll take it.

[image: Signal Sample]Signal Sample

Unbranded unit

[image: Unbranded unit]Unbranded unit

The protocol used by this unit is a bit different. At first glance it looks like identical short bursts until one looks at the intervals between the bursts. Short intervals mean 0 and long intervals mean 1. The unit sends 36 bits 7 times. My Google-fu didn’t find a lot of information about this one, but apparently the protocol seems to be very similar to the ones used by other unbranded china-devices. The so-called checksum used by this device is somewhere between useless and batshit insane.. Have a look in the code for the dirty details.

[image: Signal sample]Signal sample

Bonus: Weber Style wireless BBQ thermometer (Model AW129)

[image: Weber AW129]Weber AW129

Interestingly enough, this is just a rebranded Oregon Scientific unit that (unsurprisingly) uses the so-called “Oregon Scientific V2” protocol. To ensure data integrity, the signal is sent twice and each instance includes both a nibble checksum and a byte CRC8.

[image: Signal sample]Signal sample

Having a wireless BBQ thermometer with data logging is actually very useful when doing slow-food like pulled pork where the smoker has to be monitored regularly over a period of several hours. It’s suddenly very easy to pick up on small changes in the rate of temperature increase inside the meat. This enables very fine-grained control of the air vents in the smoker as well as an indication if more coal or water is needed. Finally, it allows me to accurately predict several hours in advance when the meat will be done.

[image: Pulled pork]Pulled pork

I have no idea why a relatively nice wireless thermometer like this one is shipped with such a crappy receiver. Main problems include:

	There is no way of setting user-defined temperature alarms. The unit is shipped with a small number of factory presets depending on the type of meat and doneness, but the selection is extremely limited.
	The transmitter sends quite accurate readings with a resolution of 0.1 degrees Celcius, but the receiver unit just rounds this number to the nearest integer. This may be OK for most use-cases, but it’s very annoying for me when I want to keep a close watch on things.
	Sound alarms cannot be changed/muted.

But at least I’m happy that I can make my own receiver this way. 🙂

Porting to the ATtiny84 and adding 433MHz capability to RPIWeather

I had a few DIP ATtiny84s left over from the prototype phase of my own sensor nodes. Using one of these I was able to make a sufficiently compact module that listens for these known data packets on 433MHz and then forwards them to my Raspberry Pi using its internal UART RX pin. For this to work, I had to stop Linux from using the internal UART pins for a serial console interface. But it was a small price to pay, I think.

[image: 433MHz receiver]433MHz receiver

Originally, RPIWeather was designed exclusively with my own sensor nodes in mind. It actually triggered a bit of much needed refactoring to add this new capability to the code. Now the script starts a thread for the InfluxDB sender as well as a thread for each data source. These threads run totally independently and are only communicating through a concurrent queue object. At this point in time, RPIWeather supports three data sources which are connected to the Raspberry Pi in three different ways:

	My own 2.4GHz sensor nodes. The receiver is connected to the internal SPI pins.
	The above-mentioned 433MHz thermometer sensors. The receiver is connected to the internal UART RX pin.
	A Bosch BMP180 barometric sensor for measuring atmospheric pressure. It is connected to the internal I2C pins.

Show me the code!

All code and schematics can, as usual, be found on GitHub.

Happy Hacking! 🙂		

By atbrask, 8 years ago

Android
Reverse engineering an Ecoteck wood pellet stove remote control
				In our living room we have an “Ecoteck Francesca” wood pellet stove that helps us keep a reasonable temperature during winter. The problem is, however, that the remote control is horribly bad (yes, it has a friggin’ remote control). At this point I have already had to replace the buttons in it once, as the old ones were beginning to wear out.

[image: Ecoteck remote control]Ecoteck remote control

There are four buttons. Two for adjusting the target air temperature and two for adjusting the level of flames or something. Pressing the two uppermost buttons at once turns the stove on or off. I haven’t looked at other Ecoteck models, but the codes in this post may also work for other models that has the same control electronics. The front panel looks like this:

[image: Ecoteck Francesca front panel]Ecoteck Francesca front panel

So, for the long run we might have to find some sort of replacement of this remote control. Fortunately, our Samsung tablet has an IR transmitter on-board that would be perfect for this. There’s even an easy to use Android API for accessing it. The problem is then that the tablet has no built-in way of “recording” the IR signal from the old remote. And the protocol is nowhere to be found online (until now, that is). So before we can create an Android app, we need to get the codes and modulation settings from the old remote control.

How to get the codes

One approach would be to get the USB Infrared Toy from Seeed and record the transmitted codes directly, but instead I decided to try out a simple logic analyzer I just received in the post from China. It’s not really a logic analyzer per se, but rather a breakout board for the Cypress CY7C68013A MCU, which is the same chip as the one in the original Saleae Logic. It even enumerates as a Saleae device when I plug it in. So, basically it’s a knockoff. Naughty Chinese!

However, word on the interwebs has it that it won’t work with recent versions of the Saleae Logic software due to some minor hardware differences regarding the onboard EEPROM chip. But all this doesn’t matter, as I’ll be using the open source PulseView tool from the sigrok project instead.

Getting the codes

It’s not necessary to build a fancy IR receiver. Just open the remote control and attach a couple of probes across the IR LED. The voltage drop here is big enough to trigger the logic analyzer. I started the analysis by having a look at the signal itself by sampling at 24 MHz and pressing a button.

[image: The setup]The setup

The signal consists of a series of infrared pulses, which seems to be grouped into blocks. An “on-block” is 30 pulses long. An “off-block” has no pulses, but lasts for the same duration as an “on-block”. Each individual pulse is on for 8.25 μs and off for 19.625 μs except for the last cycle of each block which is only on for 5.25 μs. The interval between the last pulse of a block and the first pulse of the next block is 28.5 μs.

[image: 29 pulses, 1 end-of-block pulse, and the beginning of the next block.]29 pulses, 1 end-of-block pulse, and the beginning of the next block.

Thus a normal pulse is 27.875 μs long, which means a modulation frequency of 35874 Hz. I don’t know if the duty-cycle matters at all. Time will tell… The length of a block (incl the inter-block distance) is then: 29 * 27.875 μs + 5.25 μs + 28.5 μs = 842.125 μs.

Now that we have the signal timings we can zoom out a bit. For the rest of the analysis a lower sampling rate is sufficient. In the following 1 means a high block and 0 means a low block.

[image: A single button press]A single button press

Notice how the slight inter-block delay causes the anti-aliasing to color each block a slightly different shade of gray. If we annotate the trace with 1s for on-blocks and 0s for off-blocks, we get something like this:

[image: Annotated button press]Annotated button press

If we do this for all 5 functions, we get these codes:

Ecoteck remote control codes

	Function	Code
	Temperature up	111111110001111001010011011010100110101011
	Temperature down	111111110001111001010011110010100111110011
	Fire up	111111110001111001010011111010100111101011
	Fire down	111111110001111001010011101010100111001011
	On/off	111111110001111001010011010010100110110011

Now we have all the necessary data we need to create a compatible remote control.

Implementing an Android app

Based on these codes, I have made a simple Android widget that should work on any phone/tablet that has an IR transmitter and runs Android 4.4.2 (API level 19). It relies on the ConsumerIrManager class that was added in that release.

During normal operation the widget looks like this:

[image: Ecoteck widget]Ecoteck widget

To prevent turning the stove on or off at a bad time, I originally intended the power button to be activated only if the user pressed and held it. However, in Android the long press event is reserved for doing widget management stuff and cannot be used by the widgets themselves. Bummer… Instead the widget presents the user with a confirmation dialog of sorts if the power button is pressed:

[image: Confirm on/off command]Confirm on/off command

I have been using the widget exclusively for a couple of days now and it works like a charm. 🙂

That’s it!

As usual, all code for this project can be found on GitHub. If you have any questions, please comment below.		

By atbrask, 9 years ago

Python
Creating a python module for the Contec CMS50D+ pulse oximeter (Part II)
				So, in my previous post, I wrote a bit about retrieving live 60 Hz data from a Contec CMS50D+ pulse oximeter. As mentioned, the device also has another standalone mode where it records pulse rate and blood SpO2 at 1 Hz for up to 24 hours. That is, if your batteries last that long. This thing is quite power hungry.

You can read all about the recording mode in the manual. In this post I’ll focus on the actual data download from the device. There’s really not much to it, so it will be a short post this time…

Let’s look at some recorded data

Whereas the live-mode is strictly one-way, the recorded mode involves a tiny bit of two-way communication to work. You should enable xonxoff to convince Python to talk to the device. The protocol goes as follows:

	Open a connection at 19200 baud, 1O8 with xonxoff enabled.
	Listen for live data. If we get none, the device is disconnected or turned off.
	Send [0xF5, 0xF5]. This switches the device to download mode.
	Wait for the preamble. It’s three times [0xF2, 0x80, 0x00]. In the beginning we might also have some leftover live data.
	Then we get the content length as three bytes. See below for an explanation.
	Receive the specified number of bytes. Each measurement is three bytes. See below for an explanation. Sometimes the download fails and halts midway for some reason and has to be restarted.
	Send [0xF6, 0xF6, 0xF6]. This switches the device back into live mode.
	Disconnect.

Now you should have a bunch of data to insert into a spreadsheet or whatever.

The length header

The length header tells us how many bytes of data the device will send. It consists of three bytes. The first two bytes always have their MSB set while it’s never set on the last. This gives us 21 useful bits which is enough. If we have recorded 24 hours of data, this will yield 24 * 60 * 60 = 86400 measurements. And if each measurement is three bytes, then the maximum content length will be 259200 bytes. This only requires 18 bits.

Curiously enough, the content length is always one off compared to the actual data length. So we need to add 1 to the result. Let’s look at an example:

	We have received the length header [0x81, 0x8A, 0x2C].
	Validate and strip off MSBs from the first and second byte. Now we have [0x01, 0x0A, 0x2C].
	Left-shift the first byte by 14 bits and the second byte by 7 bits. Combine the three numbers by using the bitwise OR operator. Now we have 0x452C or 17708 in decimal.
	Add 1 to the result. This means that the content length is 17709 bytes.
	Each measurement is three bytes, so we have 17709 / 3 = 5903 measurements. As the device samples at 1 Hz, this means 1 hour 38 minutes and 23 seconds worth of data.

The measurements

Each measurement consists of three bytes.

	The first byte is always 0xF0 or 0xF1. The 1 is the MSB of the pulse rate in the next byte.
	The second byte is the pulse rate. As the device only utilizes 7 bits per byte for data, the MSB is moved to the first byte. A human pulse rate can quite easily go over 127 BPM…
	The third byte is the SpO2 percentage.

That’s it!

Again, all code for this project can be found on GitHub. If you have any questions, please comment below.		

By atbrask, 9 years ago

Python
Creating a python module for the Contec CMS50D+ pulse oximeter (Part I)
				Some time ago I wrote a bit about how to download data from a Beurer BM65 blood pressure monitor to my PC via USB using a homemade Python module. That was good fun, so when I discovered the Contec CMS50D+ pulse oximeter (which also has USB connectivity) on everybody’s favorite online auctioning site for ~$40 including shipping, I had to buy one.

[image: Contec CMS50D+]Contec CMS50D+

So, what’s in the box?

Apart from the device itself, the box contains a special USB cable (we’ll get back to this), a lanyard (because why not), no batteries, a small mysterious CD-ROM, and a surprisingly well-written English instruction manual. The device works as expected and outputs plausible data on it’s little display, which is very crisp by the way. I can’t vouch for the validity of the blood oxidation level, but the pulse stuff seems pretty precise at least. However, this is not the important part of this blog entry. Let’s focus on getting data off the damn thing without having to rely on the official software.

[image: Contec CMS50D+ box content]Contec CMS50D+ box content

Plugging it in

Others have already reverse engineered the protocol of this device, but let’s have a look at the bundled software anyway. After updating all the anti-malware software on my Windows box, I tried putting in the CD-ROM. So far it seems benign enough. It contains a single executable that installs a driver and two applications: one for live data display and one for downloading up to 24 hours of recorded data from the device. The software isn’t actually half bad, but as usual it’s unfortunately Windows-only. It runs in Wine, but sadly fails to connect to the device.

The bundled driver is for the Silicon Labs CP210x series of USB to UART converters, which simplifies things considerably. Now it’s just a matter of sniffing some serial traffic. In Linux, dmesg agrees with this when the device is plugged in:

[image: CP2102 detected!]CP2102 detected!

Fun fact: The CP2102 chip is also detected if I only plug in the bundled USB cable and leave the pulse oximeter itself disconnected. Apparently this cable has a built-in USB to UART converter! That’s a bit weird considering the mini-USB plug at the other end… Even though the device itself sports a mini-USB connector, it’s not actually USB compliant and it won’t work at all with regular USB cables. So don’t throw away the special “USB cable”!

Let’s look at some real-time data

The device has two modes: real-time data and recorded data (up to 24 hours). The former streams data via the USB connection as it’s measured, while the latter is useful for situations where a running PC would be impractical. The real-time mode offers relatively rich 60Hz data while the historical mode only supports 1Hz averaged pulse and Spo2 readings. Coding-wise the real-time mode is the simplest as its protocol is one-way, so it’s a good place to start. I’ll cover the recorded data mode in another post.

Anyway, I tried starting the live data application through API Monitor v2 like I did for the blood pressure monitor. Immediately when the live data application starts, it starts spamming the SetCommState API call in Kernel32.dll trying to open all available COM ports at 4800, 19200, and 115200 baud in quick succession. All three bitrates are configured as 8O1 (oddly enough). Perhaps this is in order to support several slightly different devices?

Another slightly odd thing is that the device is always transmitting data without any handshake. All the computer has to do is to open the right virtual serial port at 19200 baud 8O1. Yet another slightly odd thing is the protocol itself. Each data packet is 5 bytes long and according to some documentation found on the web, 60 packets are sent per second. The first byte always has its MSB set to 1 while the four others always have it set to 0. According to said documentation, the meaning of the 5 bytes are as follows (spelling errors and all):

	byte	bit	content
	1	0～3	Signal strength for pulsate(0～8)
	4	1＝searching too long，0=OK
	5	1＝dropping of SpO2，0=OK
	6	1＝beep flag
	7	Synchronization,always be 1
	2	0～6	pulse waveform data
	7	synchronization，always be 0
	3	0～3	bar gragh (stand for pulsate case)
	4	1＝probe error，0=OK
	5	1＝searching，0=OK
	6	bit 7 for Pulse Rate
	7	synchronization，always be 0
	4	0～6	bit 0~bit 6 for Pulse Rate
	7	synchronization，always be 0
	5	0～6	bit 0~bit 6 for SpO2
	7	synchronization，always be 0

I think this information is for a slightly different model (hence the 4800 baud setting instead of my device’s 19200 baud), but it seems legit. In any case, I have yet to see data that doesn’t make sense according to this table.

Like last time, I have implemented a small python script that is able to connect to the device. It takes a few command line arguments and outputs a CSV file with the received data.

All code for this project can be found on GitHub.

Next up: Retrieving historical data for the last 24 hours… Stay tuned…		

By atbrask, 9 years ago

Hardware
RPIWeather: My wireless monitoring system
				Some of the first posts on this blog were about how to interact with the famous nRF24L01 2.4GHz radio chipset from both an Arduino and a Raspberry Pi. Well.. Much have happened in the mean time, but at least I have managed to put together something using what I learned back then. I decided to make a wireless monitoring system for environmental data in and around our house with at least one sensor node in each room as well as a couple of sensors outside. It is called RPIWeather and you can get all the code and documentation by clicking the name. This post is just meant as a short summary.

RPIWeather consists of a bunch of wireless sensor nodes, a base station that collects the data packets, a database server, and one or more frontends. My goal has been to collect data at 5 minute intervals and keep it indefinitely for analysis, comparison, and visualization. This creates some demands for power efficiency and reliability, which I find interesting.

The sensor nodes

My first prototype was based around an Arduino and some proto-board and is described here, here, and here. It looked like this:

[image: Arduino with nRF24L01 and DHT22]Arduino with nRF24L01 and DHT22

To keep things simple, clean, and small, I decided to ditch the Arduino platform and code in straight avr-libc for the ATtiny84 chip from Atmel. So I made another prototype, but this time with an ATtiny84 instead.

[image: Partial prototype without the DHT22 sensor]Partial prototype without the DHT22 sensor

Little by little a schematic emerged. Besides the radio, the sensor and the MCU, I also needed some sort of power supply. As the sensor nodes are to be distributed throughout the house, this implied battery power, but it couldn’t just be any old battery. The thing is that the radio chip can only tolerate up to 3.6v and the DHT22 sensor can only operate down to ~3v, which leaves a narrow band of usable voltages. A traditional voltage regulator would have burned though the batteries quite quickly, so I had to put in a switching boost converter. This way 2 AA NiMH batteries can deliver a reasonably stable 3.3v supply voltage for the circuit. Pro tip: when buying NiMH batteries, do yourself a favor and use the low self-discharge kind like Eneloop. In this use-case they will go for several months between charges.

[image: Schematic for the sensor nodes]Schematic for the sensor nodes

With the schematic in place, I made a PCB layout and sent it to ITEAD for manufacturing. Here are a couple of pictures showing various stages of assembly. The funny shape of the boards was needed to make them fit snugly into some cool boxes from New Age Enclosures.

[image: Sensor node PCBs]Sensor node PCBs

[image: The first 10 finished boards]The first 10 finished boards

[image: Inside a single sensor node]Inside a single sensor node

[image: A single sensor node]A single sensor node

[image: The back of a sensor node]The back of a sensor node

[image: The 10 first sensor nodes]The 10 first sensor nodes

In addition to the DHT22 sensors, I have also made firmware for collecting data from a wind vane and a rain gauge. But I haven’t deployed any of that yet. Maybe next spring…

All in all the main results for the sensors are:

	They work! I have tested concurrent operation of 10 units without major problems.
	Firmware optimized for ATtiny84 @ 1 MHz (8MHz crystal with the CKDV8 fuse set)
	Temperature and humidity measurement using a DHT22 sensor
	Wind speed and wind direction measurement using a La Crosse TX23 anemometer
	Rainfall measurement using a WS-2300-16 rain gauge
	Wireless operation using the very popular nRF24L01+ 2.4 GHz radio chip
	Very compact CRC32 implementation
	Battery powered operation using a very efficient 3.3v DC/DC converter
	Power management by sleeping the CPU and turning off unneeded hardware
	Battery voltage measurement included in data packet
	Typical battery draw while sleeping has been measured to around 17uA
	Total firmware size from 3.0 kiB to 3.5 kiB (depending on sensor type)

The base station

I use a Raspberry Pi as base station. To make it more appliance-like than a typical Raspbian installation, I have instead installed a variant of Tiny Core Linux called piCore. This is basically a very small Linux distribution that loads all programs into memory on boot and leaves the SD card alone after this. This eliminates the usual risk of corrupting the file system when doing a power-cycle.

On the base station I have installed a small python script that continually polls the nRF24L01 radio using the Raspberry Pi’s built-in SPI interface pins. When a data packet arrives, it is buffered (in case of network problems) and forwarded to the database.

The database

With my limited data requirements, I could probably use any old database out there without issues. However, given the nature of the data, it was natural to select a so-called timeseries database. For this project I chose InfluxDB, which was very, very easy to set up on my Ubuntu-based file server. It automatically exposes a simple HTTP interface for storing and querying data, which is just what I need for this project.

The frontend(s)

Well, I’m not quite there yet… So far the only frontend is the admin interface that is built in to InfluxDB. Not very user friendly (not to mention the Wife Acceptance Factor)! The next step now is to make some sort of nice frontend for this. I have several ideas floating around my head:

	An intranet website. The easiest way.
	An Android widget. Both the wife and I have Android smartphones.
	Dedicated hardware devices. This would be a great use-case for my new ESP8266 wifi modules and some 84×48 Nokia LCDs I have lying around.

Stay tuned…		

By atbrask, 9 years ago

Javascript
Tech Talk Tuesday Timer
				So, we love to have very technical talks at Open Space Aarhus, our Friendly Local Hackerspace™. In fact we love it so much that the first Tuesday every month we host an event called Tech Talk Tuesday, or T³. The general idea is that the board members take turns scheduling a handful of short 15…30 minute talks. But as much as we like to hear nerds drone on about nerdy stuff for hours, we like it even better when they stick to the time plan. Therefore, I decided to make some sort of countdown-timer. At Open Space Aarhus we really like tautograms for some reason, so the name of this contraption was a no-brainer: Tech Talk Tuesday Timer, or T⁴.

Features

A normal person would just find some normal off-the-shelf solution and get on with it, but what fun is that? Projects like this tend to be more fun when you make some self-imposed restrictions. Let’s start with some quite reasonable ones:

	All hardware must be sourced from within Open Space Aarhus.
	The timer must be wirelessly remote controllable.
	The display must be big enough to be clearly visible by all attendees.
	Any third-party software must be free (as in free beer), preferably open source.
	All visual design must comply with OSAA’s design guidelines.

My starting point was therefore an off-the-old-crap-shelf-at-OSAA solution consisting of an old craptop running Linux and an ancient ATI Remote Wonder remote control. This setup easily satisfies the first four restrictions. The fifth is also not really a problem. A few more restrictions were added to make it interesting:

	The timer must be implemented as a single self-contained SVG file. All tricks are allowed, but it must remain a valid SVG file.
	The timer must work out-of-the-box on a fresh install of any recent Linux distribution with only minimal setup. It is allowed to install a browser of choice and whatever software needed for the remote control.

The result

In the end I succeeded making a valid SVG file with an embedded OpenType font (as per the design guidelines), some embedded sound effects, and a remote controllable user interface. The SVG works in all major web browsers. Microsoft Internet Explorer is not a major web browser.

[image: Tech Talk Tuesday Timer]Tech Talk Tuesday Timer

You can get the code on GitHub or try it out online.

Usage

The timer has several states, each with its own user interface. Any input device that can act as a keyboard is usable for this.

Logo Screen

	Press ‘B’ to go to Wallclock Mode.
	Press ‘D’ to go to the Configuration Screen.

Configuration Screen

	Press 0..9 and the arrow keys to set the time.
	Press ‘D’ to start the timer
	Press ‘C’ to go to the Logo Screen

Running Timer

	Press ‘D’ to pause the timer.
	Press ‘C’ to cancel the timer.
	When there’s 5 minutes left, a warning sound is played.
	When time’s up, the alarm goes off.

Paused Timer

	Press ‘D’ to resume the countdown.
	Press ‘C’ to cancel the timer.

Wallclock Mode

	Press ‘C’ to go back to the Logo Screen.

 		

By atbrask, 10 years ago

[image:]

C64
What does a TrueType font look like on the inside? And how do you make one? (Part II)
				In this post, I’m going to discuss a simple bitmap vectorization algorithm that’s compatible with TrueType. The goal is to convert a C64 character set to a usable TrueType font.

Most technical details about TrueType and character mapping (i.e. C64 character sets vs. PETSCII vs. ASCII vs. Unicode) can wait for the upcoming blog posts. However, there are already a few facts about C64 characters and TrueType we do have to keep in mind. These are:

	Each C64 character glyph is 8×8 pixels, monochromatic, and monospaced. Because they are monospaced, we don’t have to concern ourselves with issues like kerning.
	TrueType only has limited support for bitmap fonts. Therefore, we need to vectorize the 8×8 bitmaps. No need for fancy bezier curves. Just crisp retro-looking blocks with 90-degree corners.
	A TrueType-style glyph in its most basic form (without hinting) consists of a set of contours, and a contour consists of a set of points. Points in opaque contours are specified in clock-wise order and points in transparent contours (e.g. the “hole” in the letter O) are specified in counter-clockwise order.
	Some letters go a bit below the baseline. The vertical range above the baseline is called the ascent and the range below is called the descent. Most C64 character sets seem to have an ascent of 7 pixels and a descent of 1 pixel.
	Coordinates in a TrueType glyph are normally scaled such that the glyph will fit inside a 2048×2048 box. If the font has a non-zero descent specified, the Y-coordinate will be negative below the baseline. Assume a typical 8×8 pixel C64 character with a 1 pixel descent. In TrueType-terms each pixel would then be 256 units by 256 units, the lower left corner would be at (0, -256), and the upper right corner would be at (2048, 1792).
	A contour should consist of as few points as possible in order to reduce complexity. Consecutive points along an axis can be simplified to include only the endpoints without any differences in the rendering of the glyph. Also, the last edge in a contour is implicit. The renderer will simply assume a direct line from the last point back to the first.

This ought to be enough for now. Let’s now try to convert the default C64 ‘A’-glyph to a TrueType-compatible vectorized form. In ASCII ‘A’ is char #65, but on a C64 in upper-case mode the character set is laid out as follows. In this mode there are 128 characters in both their regular form as well as an reverse video version:

[image: Dump of C64 character generator data (upper-case mode)]Dump of C64 character data (upper-case mode)

Each character consists of 8 bytes that each describe a row of 8 bits. The top left pixel of a given character is the most significant bit in the first byte and the bottom right pixel is the least significant bit in the 8th byte. Let’s look at the first 24 bytes of this data:

0x3C, 0x66, 0x6E, 0x6E, 0x60, 0x62, 0x3C, 0x00, 0x18, 0x3C, 0x66, 0x7E, 0x66, 0x66, 0x66, 0x00, 0x7C, 0x66, 0x66, 0x7C, 0x66, 0x66, 0x7C, 0x00

We are interested in the second character, which is at bytes 0x08…0x0F. If we try to show these as binary with one number per line, we get something like this:

0x08: 0x18 = 0b00011000
0x09: 0x3C = 0b00111100
0x0A: 0x66 = 0b01100110
0x0B: 0x7E = 0b01111110
0x0C: 0x66 = 0b01100110
0x0D: 0x66 = 0b01100110
0x0E: 0x66 = 0b01100110
0x0F: 0x00 = 0b00000000

Or, a bit more clear like this:

[image: The letter 'A' on a C64.]The letter ‘A’ on a C64.

This looks like the letter ‘A’. Notice that it doesn’t go below the baseline (i.e. the lower-most row consists entirely of zeroes). But how do we make this into some nice vector contours? An easy way to vectorize a bitmap like this is to simply draw a clockwise box around each opaque pixel. This, however, is very wasteful:

[image:]Naive vectorization

We are already getting close. Notice how all edges on the outside are going in a clockwise direction around the letter, and how the edges in the “hole” are going counter-clockwise. This is exactly what we want. But we only want edges on the boundary of the contours. In the picture above we have 28 opaque pixels with 4 edges each, resulting in 112 edges in total. That’s a bit too much. Let’s change the algorithm to skip all edges where the adjacent pixel is opaque. Then it looks something like this:

[image: Unncessary edges removed]Unncessary edges removed (well, most of them..)

Now we are down to 38 edges. But we can do better. Quite a few edges are consecutive along an axis. These can be merged to yield simpler contours.

[image: Almost there...]Almost there…

Now we are down to 20 edges with 16 in the outer clockwise contour and 4 in the inner counter-clockwise contour. Now we only have to scale the coordinates of the edges to fit a TrueType glyph. Remember that everything is supposed to fit within 2048×2048 units, giving a pixel size of 256×256. Then we are done:

[image: Vectorization done!]Vectorization done!

In the TTX format of FontTools, this would look something like the following:

<TTGlyph name="A" xMin="256" yMin="0" xMax="1792" yMax="1792">
 <contour>
 <pt x="256" y="0" on="1"/>
 <pt x="256" y="1280" on="1"/>
 <pt x="512" y="1280" on="1"/>
 <pt x="512" y="1536" on="1"/>
 <pt x="768" y="1536" on="1"/>
 <pt x="768" y="1792" on="1"/>
 <pt x="1280" y="1792" on="1"/>
 <pt x="1280" y="1536" on="1"/>
 <pt x="1536" y="1536" on="1"/>
 <pt x="1536" y="1280" on="1"/>
 <pt x="1792" y="1280" on="1"/>
 <pt x="1792" y="0" on="1"/>
 <pt x="1280" y="0" on="1"/>
 <pt x="1280" y="768" on="1"/>
 <pt x="768" y="768" on="1"/>
 <pt x="768" y="0" on="1"/>
 </contour>
 <contour>
 <pt x="768" y="1024" on="1"/>
 <pt x="1280" y="1024" on="1"/>
 <pt x="1280" y="1280" on="1"/>
 <pt x="768" y="1280" on="1"/>
 </contour>
 <instructions><assembly>
 </assembly></instructions>
</TTGlyph>

Finally, let me give you a sneak peek of what this character looks like in the TrueType font editor FontForge:

[image: Screenshot of FontForge]

Please have a look at the complete C64 to TTF python script if you want to know more about this. It can be found at my GitHub account.

Next time, I’ll talk a bit about how to map all the characters from the native C64 format into PETSCII, ASCII, and Unicode.		

By atbrask, 10 years ago

[image:]

C64
What does a TrueType font look like on the inside? And how do you make one? (Part I)
				So, here the other day (actually a few months ago) I was looking for some retro-looking 8×8 pixel bitmap fonts for a project involving an old flip-dot display at My Friendly Local Hackerspace™. During this search I came across this website with more than 600 character sets from various old Commodore 64 games, applications, and demos. However, they are all in a very raw format where they are basically just partial memory dumps from running C64 games/demos. The author even mentions that he hasn’t found any easy way to convert them to a more useful format like, for example, TrueType. In fact, a Google search indicates that only very few C64 character sets are available for download as TrueType files. Most notable are the ones by Style64. However, they all seem to be more or less converted by hand using various font authoring tools. Well that’s not very elegant…

Somebody ought to do something!

Let’s explore what a TrueType font file looks like on the inside so we can create one ourselves. As I’ll cover later, it turns out to be quite possible to do with a bit of coding effort. In fact we don’t even have to do all the dirty work moving bits around and calculate checksums in a binary Truetype font file ourselves. There is (of course) a nice Python package called TTX/FontTools that can help us out. It encapsulates all the relevant data tables, as they are called, but it’s still fairly close to “the metal” and rather difficult to get started with.

The main use-case for TTX/FontTools seems to be TTX, which is a command-line tool for converting TrueType files into a corresponding XML-format and vice versa. Users can then manipulate a font in various ways using a basic text editor rather than sophisticated font editor programs, where it can be difficult to see what actually happens to the font behind the scene. But for our particular use-case we are not interested in the tool itself, but rather what makes it tick. It is really difficult to find any documentation or tutorials for this package. Especially if one wants to create a new font from scratch instead of just editing an existing one. I’ll get back to this later.

This post is meant as an introduction to the subject. All the dirty details will be fleshed out in upcoming posts. I have implemented a conversion tool in Python and if you can’t wait for the details, you can have a sneak-peek of the code on GitHub.

The problem in a nutshell

OK, so how do we get from a C64 memory dump containing some 8×8 pixel bitmapped characters to a usable TrueType file? The problem can be split into the following sub-problems:

	Vectorizing the 8×8 pixel bitmaps into glyph into a set of contours.
	Mapping from the native C64 format into ASCII (and Unicode).
	Generating the actual TrueType file using TTX/FontTools.

I’ll address these three sub-problems across the next three blog posts.

Useful software:

	Python – A very nice programming language. Like Perl but less painful and much prettier.

	TTX/FontTools – Without this package I probably wouldn’t have bothered with TrueType.
	FontForge – A TrueType font editor. Nice for checking the sanity of font files.

If your operating system is a derivative of Debian Linux (like Ubuntu or Linux Mint) then Python is probably pre-installed and the other two packages are easily installable through the built-in package system. It’s also pretty easy to get it to work in Mac OS X. It probably also works in Windows, but then you’re on your own..

Useful links:

	Wikipedia article about TrueType
	Microsoft’s Typography resources
	An old reference manual from Apple (notice the references to Newton at the bottom of each page…)
	One of the very few and short tutorials for FontTools

The TrueType file format at a glance

It seems that the file format specification varies a bit depending on who you ask. Traditionally, there are three big players in this field, Microsoft, Apple, and Adobe, and they don’t agree 100% on what a proper TrueType file should look like. I will primarily be using Microsoft’s definition, as Apple’s specification on required tables in the file lacks the “OS/2” table, which is used by Microsoft Windows itself as well as Microsoft Internet Explorer when loading fonts from a website. There are some licensing bits in here that tells Internet Explorer if it’s OK to download and use this font.

Basically, a TrueType file is a set of tables. Each of these tables describe a certain aspect of the font. For my particular purpose I can leave out features like kerning, hinting, ligatures, and all other fancyness that’s useful for working with proportional fonts. My goal here is to convert monospaced 8×8 pixel bitmaps into proper TrueType glyphs. The required tables for a bare-bones font are as follows:

	Table name	Table description
	cmap	Character to glyph mapping
	glyf	Glyph data
	head	Font header
	hhea	Horizontal header
	hmtx	Horizontal metrics
	loca	Index to location
	maxp	Maximum profile
	name	Naming table
	post	Postscript information
	OS/2	OS/2 and Windows specific metrics

A detailed description of these tables are outside the scope of this post, but it’s all there in the specifications I linked above. As mentioned earlier, I didn’t succeed in finding a tutorial for creating font files from scratch using TTX/FontTools. It requires a deep knowledge of the TrueType format, but it can be done by reading the FontTools code (as well as the specifications) and doing some trial-and-error using the XML output feature. Basically you just need to fill in all the data mentioned in the specification. There are very few shortcuts in the process. But more on this in a later blog post…

In my next post, I’ll discuss the vectorization algorithm for converting a 8×8 pixel bitmap into a set of polygon contours. Stay tuned…		

By atbrask, 10 years ago

Uncategorized
Creating a Python module for the Beurer BM 65 blood pressure monitor (Part II)
				In my last blog post, I reverse engineered most of the USB protocol of the Beurer BM 65 blood pressure monitor. The only thing left was the first byte in each 9-bytes-measurement. I figured it was probably some status bits about detected cardiac arrhythmia. But that just isn’t good enough. I want total knowledge of the protocol, damn it!

We could perhaps reverse engineer the meaning of this byte too by trying all possible values of the first byte against the data downloader in Beurer Health Manager. Then it would be a simple comparison between the byte-value and the reaction. We already know that 0xAC means a normal reading. But what about the other 255 possibilities?

I came up with a few different ways of determining this:

	Fake/make a measurement with cardiac arrhythmia using the actual device. I just don’t know how easy it is to fool it. And even if we succeed, we would still have incomplete knowledge about the first byte.
	Use API Monitor to intercept the relevant ReadFile API call and change 0xAC to something else. This is the simplest approach, but very manual and tedious.
	Program an Arduino to simulate the device. Remember that the Health Manager program spams all COM ports until it gets a response. A fun fact here is that while the program does check for the presence of the Prolific 2303 driver, it’ll happily try any old COM port. And an Arduino would be easy to program in such a way that it reacts like the real device. Besides, this approach would also yield the most Blogosphere points..
	Implement a fake virtual COM port in Windows. With this, one can simulate the device in software.
	Use a decompiler to inspect the code within Health Manager itself. All this reverse engineering would have been easier altogether if I’d just done this in the first place. But it feels like cheating. Let’s get back to this one later..

After a bit of consideration, I chose the approach with the virtual COM port. However, instead of creating a virtual COM port driver from scratch, I’m using the com0com project. It creates two virtual COM ports and links them, acting like a null-modem. Then I can code the actual logic in plain Python.

[image: Virtual null-modem between virtual COM ports]Virtual null-modem between virtual COM ports

By default, Windows 7 x64 requires signed kernel-mode drivers, and the com0com driver is only test signed. Fortunately, this security limitation can be easily removed. I then linked the virtual COM ports 5 and 6. Health Manager will try them in ascending order, so by attaching my Python code to COM6, I could fool Health Manager into believing there’s a blood pressure monitor on COM5.

And now for a bit of good news followed by a bit of bad news.. The good news is that my scheme of setting up this virtual null-modem works like a charm! Health Manager is easily fooled into believing that it’s communicating with a real device on COM5. However, the bad news is that after iterating through all combinations for the first byte in the 9-byte measurements, my Python script only triggered a new reaction from Health Manager with the value 0xA9 (169). And this reaction was to reject the entire data transfer! Not a single cardiac arrhythmia-indicating result was reported. Hmm.. That’s unexpected..

Finally, I succumbed to my curiosity and disassembled the Health Manager binary using ILSpy, It’s just regular .NET code. After a bit of digging, I could confirm my new findings. While the first measurement byte (called the header) is recorded, it is never used except for rejecting the transfer if it’s equal to 0xA9. Bummer..

Well.. You can’t win them all..		

By atbrask, 10 years ago

	
		Posts navigation

		1
2
Next

					

					
		
						
				
					Search for:
					
				
				
			

		
		Recent Posts

			
					NeoPomodorino: A Pomodoro style timer
									
	
					RPIWeather: Adding off-the-shelf wireless sensors
									
	
					Reverse engineering an Ecoteck wood pellet stove remote control
									
	
					Creating a python module for the Contec CMS50D+ pulse oximeter (Part II)
									
	
					Creating a python module for the Contec CMS50D+ pulse oximeter (Part I)
									

		
Recent Comments
	P-J on Creating a python module for the Contec CMS50D+ pulse oximeter (Part I)
	LazyT on Creating a Python module for the Beurer BM 65 blood pressure monitor (Part I)
	LazyT on Creating a Python module for the Beurer BM 65 blood pressure monitor (Part I)
	hafor on Creating a Python module for the Beurer BM 65 blood pressure monitor (Part I)
	hafor on Creating a Python module for the Beurer BM 65 blood pressure monitor (Part I)

Archives

				July 2017
	April 2016
	April 2015
	March 2015
	November 2014
	July 2014
	January 2014
	November 2013
	October 2013
	April 2013
	March 2013

			
Categories

				Android

	Arduino

	C64

	FontTools

	Hardware

	Javascript

	Open Space Aarhus

	Projects

	Prototyping

	Python

	Raspberry Pi

	Software

	SVG

	TrueType

	Uncategorized

	USB

			
Meta

			Log in
	Entries feed
	Comments feed
	WordPress.org

		
					
	

				

		

	

	
					
						
																

Hestia | Developed by ThemeIsle

			

					
			

